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Pressure and pressure-velocity space correlations are calculated, using rapid- 
distortion theory, for turbulence in a uniform shear flow. It is found that pressure 
fluctuations remain correlated over significantly greater distances than do velo- 
city fluctuations. When these predictions are used as a model for turbulence in 
free turbulent shear flows, it is found that the predicted scale of the pressure 
fluctuations is larger than the flow width. It is proposed that pressure fluctua- 
tions remain highly correlated right across free shear flows. Predictions from the 
theory are then compared with various experimental situations in which reason- 
able qualitative agreement is to be expected, and this is found. 

1. Introduction 
Random pressure fluctuations, like velocity fluctuations, are an integral part 

of turbulent flows, but they have received less attention. This is due mainly to 
the difficulty of obtaining, except a t  a solid boundary, reliable measurements in 
turbulent flows. For flows with solid boundaries there have been numerous theo- 
retical (e.g. Kraichnan 1956; Hodgson 1962) and experimental investigations 
(e.g. Willmarth 6c Wooldridge 1962; Bull 1967), particularly on boundary layers. 
Some early theoretical work was also carried out on pressure fluctuations in 
isotropic turbulence (Batchelor 1956, p. 117). Space correlations and the ratio 
p‘/F were calculated, where p’ is the r.m.s. pressure fluctuation and? the sum 
of the mean squares of the velocity fluctuations. There has, however, been little 
theoretical work on pressure fluctuations within turbulent shear flows removed 
from solid boundaries. One exception is the work of Deissler (1962), who con- 
sidered the development of homogeneous turbulence in a uniform shear flow, 
but assumed that the turbulence was weak enough for nonlinear interactions to 
be neglected. However, viscous effects were included. His theory is valid only for 
turbulence Reynolds numbers much less than one (see below). 

Townsend (1970) computed space correlations for turbulent velocity fluctua- 
tions in a uniform shear flow using rapid-distortion theory, a procedure which 
should be valid for the large-scale motions that are mainly responsible for the 
overall shape of correlation functions. His results agreed well with the experi- 
mental findings of Rose (1966) for a uniform shear flow. Townsend further hypo- 
thesized that, when fluid is entrained into a free turbulent shear flow, ‘(the 
resultant initial motion is likely to be quasi-isotropic in the sense that i t  is not 
highly organized or spatially orientated”, and that as “the ‘ages’ of parcels of 
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turbulent fluid. . .are usually comparable with local time-scales . . .the total 
strain experienced by any parcel is not large compared with one”. Hence the 
turbulence structure should be the result of the finite distortion by the mean 
shear of the quasi-isotropic turbulence generated by the entrainment process. 
To test this, he compared velocity correlations predicted from his rapid-distor- 
tion t,heory with those measured in a number of two-dimensional free shear flows. 
He found very good agreement. 

In view of Townsend’s success, it appears worthwhile to  use the same approach 
to investigate pressure fluctuations within turbulent shear flows. The main areas 
of pract,ical interest concerning turbulent pressure fluctuations are jet noise and 
wall-pressure fluctuations. Although the theory is not applicable to these par- 
ticular situations, i t  does provide a reference point for interpreting experimental 
results from them. 

In the next section the theory is presented. Because much of i t  has been de- 
veloped previously (Moffatt 1965; Townsend 1970) for velocity fluctuations 011ly 
those elements which relate to pressure fluctuations are treated in any detail. 
I n  fs 3, the computed results for space correlations and the ratios p ’ / p  and p ’ / r  are 
presented, 7 being the Reynolds shear stress. The t!lcoretical results are discussed 
in the final section in relation to  the somewhat sparse experimental data. 

2. Theory for pressure fluctuations 
If a turbulent flow with velocity and pressure fluctuations describable by 

ui = c a,(k, t )  dk.=, p/p = c H(k, t )  eZlr.= 
k k 

is acted upon by a uniform shear such that the mean flow is given by 

U, = (da/dt) x,, U2 = U, = 0, 

where daldt is the constant strain rate, neglect of nonlinear and viscous terms in 
the equations of motion and the assumption of incompressibility lead to the 
following equations for the Fourier coefficients: 

k; - 2ki0 + ak, k,,,. 

and ct is tho total strain. 
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If one is considering motions with length scale h and velocity scale v, the non- 
linear and viscous terms can be neglected as above if 

and 

That is, the theory is applicable to the larger scales in high Reynolds number, low 
intensity turbu1ence.t 

Ffowcs Williams (1965) has shown that, for non-zero Mach numbers, compres- 
sibility effects influence the largest-scale pressure fluctuations. At sufficiently 
low Mach numbers, this mill be important only for scales so large that they con- 
tain negligible energy. The low frequency roll-off (as d) in the surface pressure 
spectra measured by Hodgson (1962) on the wing of a glider indicates that suffi- 
ciently low Mach numbers do occur in practical air flows. This should always be 
true for water flows. 

The equations for the ai can be written in matrix form: 

a, = Aim a,( k, 0). 

The three-dimensional wavenumber velocity spectra then become 

@,,(k, t )  = AinAmq@w(ko, 01, 

after ensemble averaging; in particular 

@33(k, t ,  = (k!/k4) @33(k01 O). 

The pressure spectrum becomes 

QD,,(k, t )  = 4(k;/k4) (da/dt)' @,,(k, t )  

and the pressure-velocity cross-spectra become 

@p3(k, t )  = 2i(da/dt) (k1/k2) @33(k, t )  
and @,l(k, t )  = 2i(da/dt) (k l /k2 )  @31(k, t ) .  

Consider the case when k, + 0 and k is very small in (3). Then from (2) 

@,p(k,t) B @33(k,t) 

(3) 

for small k, or for large-scale motions. That is, a t  the large scales there is far more 
energy in pressure than in velocity fluctuations. This implies that pressure 
fluctuations remain correlated over larger separations than do velocity fluctua- 
tions.$ It also suggests that  the theory should predict pressure correlations a t  
least as well as i t  predicts velocity correlations. 

t The theory of Deissler (1962) assumes that nonlinear terms are negligible but viscous 
terms a,re not. Such a theory is true if w/U, < 1, v[h(da/dt)]-' < 1 but Av/v < 1. The last 
condition is a serious restriction and is rarely encountered in turbulent flows of practical 
significance. 

$ Deissler (1962) also arrived a t  this conclusion having obtained (3) but his expressions 
for the @,i(k, t )  are quite different and involve the length scale (vt)& as an important quan- 
tity. 
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The pressure correlation function Rpp(rl)  with streamwise separation is given 

by 

where 

and so using (8) 

This can only occur if R,,,(r,) has a large negative loop. The above relation was 
also obtained for wall-pressure correlations by Hodgson ( 1962), who assumed that 
pressure fluctuations are mainly the result of interaction between the turbulence 
and the mean shear, which is of course implicit in rapid-distortion theory. It 
should be noted also that Q,, is a function of Q33 only, as is QP3,  while Qpl is a 
function of the Reynolds-shear-stress spectrum 013 only. 

Assuming initially isotropic turbulence gives 

implying initial correlation functions of the form 

Rim(r) = [Si,( 1 - i r / L )  + irir,/rL] e+IL, 

where r = Irl and L is termed the ‘initial’ length scale and is an adjustable con- 
stant, and -- 

Rim@) = ui(x + r) u,(x)/(ufu:$. 

Equation (10) is the form chosen by Townsend (1970) and is a good approxima- 
tion for large-scale motions in high Reynolds number, grid-generated turbu1ence.j 
It is also used here to allow a comparison between the pressure correlations 
presented below and Townsend’s velocity correlations. Equations ( 1)-( 5), (9) and 
(10) can now be used to calculate space correlation functions and 3, using 
relations similar to (6) and (7). The details of the procedure used are similar to 
those described in Townsend (1970, appendix B), for velocity correlations, and 
are not repeated here. From the analysis, 

- 
uzu, = .Zfi,(4 
- 

and p’ = p2XL2(dCt/dt)2g(a), 

where fLl and g are functions of c1 only. 

no differewe at the low wavenurnber oncl of the spc, 0 t ruin. 
t q5,s(kl) m a s  calculnted using (9) rind Yl(k,) = X:L6(32n3)-f rxp ( - fkiL*) .  There was 
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FIGURE 1. Space correlations from rapid-distortion theory. (a )  With rl separations for 
total strain of 2. (b )  With r1 separations for total strain of 6. (c) With r, separations for total 
strain of 2. (d )  With separations along various axes for a total strain of 2. 
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3. Theoretical results 
In  figure 1 (a) ,  Rpp(rl/L) is compared with the velocity correlations Rll(rl/L) 

and R,,(r,/L), for a total strain of 2. As was inferred in the previous section from 
(3)) the pressure fluctuations are correlated over significantly greater separations 
than velocity fluctuations and Rpp(rl/L) has a large negative loop. The greater 
spatial scale of pressure fluctuations is also illustrated in figure 1 ( b )  for rl sepa- 
rations a t  a total strain of 6 and in figure l (c)  for r3 separations at a total strain 
of 2. Figures 1 (a)  and ( 6 )  also show the correlation Rp3(rl/L) for comparison with 
the other curves. 

In  figure 1 ( d ) ,  pressure correlations for separations in the three orthogonal 
directions and some pressure-velocity correlations are grouped for comparison 
with each other. It can be seen that Rpp(r2/L) and R,,(r3/L) remain positive 
and that Rp3(rl/L) is about three times as large as Rpl(rl/L). Most of the curvcs 
presented are for a total strain of 2, to allow comparison with Townsend’s 
results. 

The space correlations Rpp(r/L), Bp3(r/L) and Rpl(r/L) for separations in the 
r l ,  r3 plane are presented in figure 2 in the form of isocorrelatioii curves. Their 
asymmetry about the axes is marked. Those for separations in the rl, r2 plane are 
presented in the same form in figure 3. Because of the symmetry properties of the 
mean flow (Craya 1958), Rpp(r) = BDp( - r), Rpi(r) = -Bpi( - r) and the correla- 
tions Rpp, R,, and Rp3 are invariant under reflexion about the r l ,  r3 plane. Hencc 
only half the r,, r3 plane and a quarter of the r l ,  r3 plane need be presented. Also, 
from the symmetry properties of the mean flow, Rp2(r) = 0 if r2 = 0; that is, in 
the rl ,r3 plane. Rl,2(r) has not been calculated for separations in the rl ,  r2 plane. 

vs. thc 
total strain, where ,13 = (’):/(Lda/dt). In $2, it was seen that v/(hda/dt) < 1 for 
the theory to apply, and p i s  really the ‘initial’ value of this number. For a total 
strain of 2 it  can be seen that (p‘/p?) = 0.06//3. For p-‘ 2: 20, pl/pT ci 1.2. This 
may be compared withp‘lp? = 0.1 9, calculated for isotropic turbulence (Batche- 
lor 1956, p. 182). In  this paper p’, p” and r have been calculated using equation 
(10) for ‘IJ*(ko). Townsend (1970) calculated a” and T using 

ir(fi,) = kiL5(3Zn3)fexp ( -  4k,2LS). 

Townsend’s and the author’s calculations of ~ /p?  are compared iii the lower 
part of figure 4. Experimental points from uniform shear flows for 7/p? are also 
shown. The information 011 is presented to demonstrate the order of varia- 
tion in the predictions with changes in initial conditions and the degree of agree- 
ment with experiments, for this particular ratio. Similar variations are to  be 
expected for the ratios p’/r and p‘lp?. 

The calculations also show that at  the institnt t = 0 there is a pressure fluc- 
tuation field and Rpp(r) and R,li(r) me non-zero. This implie; that pressure 
fluctuations are set up a t  the instant the strain field is applied. 

Figure 4 presents the non-dimensional groups (p’/r)/3 and (p‘/p?) 
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FIGURE 2. Isocorrelation curves for separations in the rl, r, plane for a total strain of 2. 
(a)  %&-P), (b )  %&-/L)> (c) %W). 

4. Discussion 
Limitation of $ow width on lateral scales 

Townsend (1970) compared computed velocity correlations in detail with the 
measurements by Rose (1966) in a uniform shear flow and by Grant (1958) in a 
two-dimensional wake. He found very good agreement. In  Rose’s experiments 
the distance between the measuring station and the duct side walls was 6L, and 
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FIGURE 4. Variation of /?p'/7, /3p'/p$ and with total strain a. /? = (~ ; (0 ) )3 / (Lda /d t ) .  
-- , theory using initial conditions of equation (10); - - - -, theory using Townsend's 
(1970) initial conditions; 0, experimentnl results of Champagne et al. (1970); 0,  experi- 
mental results of Rose (1966). 

in Grant's experiments thc edge of the wake was approximately 3.5L from the 
measuring position. Figures 1-3 show that for lateral separations of this order 
the values of the pressure and pressure-velocity correlations are very high. For 
the experiments in a uniform shear flow, this suggests that the duct used by Rose 
was not wide enough. It may be that the theory as a whole is inapplicable to free 
shear flows and that the remarkably good agreement found far velocity correla,- 
tions is coincidental. This, however, appears unlikely. It is more probable that 
pressure fluctuations do remain highly correlated right across turbulent shear 
flows, as sketched in figure 5. Thus, although the pressure and pressure-velocity 
correlations predicted for rg separations cannot be correct, the departures from 
these predictions, within the turbulent region, may not be important for velocity 



Pressure $uctuatio?is i i ~  turbulent shcar $ow 809 

FIGURE 5. Pressure correlation across a shear flow. - , theoretical curve; 
- _ -  -, conjectural experimental curve. Arrow indicates free edge of shear flow. 

correlations or pressure correlations with separations in the r l ,  r2 plane. Similarly, 
the measurements from experiments in a uniform shear flow, not only those by 
Rose (1966) but also those by Champagne, Harris & Corrsin (1970) and Mulhearn 
& Luxton (1975), may have been little affected by limited duct size. 

Experimental evidence 

The author knows of no experimental results from two-dimensional shear flows, 
with high Reynolds number and low intensity, with which the theory can be 
compared and the above oonjectures checked. There is some indirect corrobora- 
tion from results in a two-dimensional mixing layer, from boundary-layer wall- 
pressure fluctuation data and from atmospheric data. I n  all these cases nonlinear 
effects are not negligible but one w o ~ l d  expect some qualitative agreement,, 
especially with regard to the relative scales of pressure and velocity fluctuation 
fields. Measurements of pressure fluctuations within turbulent flows must be 
treated with some caution, owing to the many possible sources of error (see 
Siddon 1969). For instance, if the static pressure sensing orifices are not locatcd on 
the probe body a t  a position where the mean static pressure is the same to  a high 
degree of accuracy as the true value, then streamwise velocity fluctuations will 
give rise to substantial errors. It appears likely that the measiirements made by 
Kobashi (1957) and Strasberg (1963) of turbulence in the near wakes of circular 
cylinders suffered from this problem. 

Jones (1967) attempted to  measure pressure fluctuations generated in t'he 
mixing layer of a two-dimensional jet. He used a probe microphone arrangement, 
the probe tip having a rounded end and the static pressure holes being I0 probe 
diameters (or 12 nim) from the nose. The probe thus correctly sensed only the 
larger-scale motions. Also, the measured signal must have been contaminated by 
transverse velocity fluctuations. The measurements he obtained wcre auto- 
correlations not space correlations. If one uses Taylor's hypothesis (a crude 
approximation for this flow), the theoretical space correlations and experimental 
autocorrelations may be compared. Figure 6 shows such a comparison for 
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FIGLXE 6. Comparison between theory and experiment for a two-dimensional mixing 
Inycr. __ , theorrtical curves. Eapernnental points of Jones (1967): 0, R,,(7U,/L,); 
0 ,  ~~, , (TC~,/L,) .  ( L  = 9-4 inin, I;, = 17.3 mm.) 

R2,1,(~1) a d  R33(rl) ,  with L = 94mm.  L, on this figure is the area under the 
R 1 l ( ~ l )  curve to thc first zero crossing. These measurements were obtained at  
.rJD = 2.5,  x3/D = 0.05, with the origin at  the tip of the nozzle. D is the nozzle 
width. The convection velocity U, was taken from Bradsham, Frrriss & Johnson 
(1964) as 0.6 times the free-stream velocity. The theoretical curves are for a total 
strain of 2 .  The total strain of the flow was estimated to have approximately this 
value from Ti l [< /dx3 ,  where T is the time delay after which the moving-axis 
autocorrelation for the zcl fluctuations has decreased to vl. (R33(~1)  and the mov- 
ing-axis autocorrelation function were supplied privately to the writer by Dr 
I. S. F. Jones.) It can be seen that agreement, so far a9 the relative scale of velocity 
and pressure fluctuations is concerned, is good. 

Jones corrected his r.in .s. pressure measurements for the effects of transverse 
velocity fluctuations. If this corrected value is used, 

- 
p'/pq2 E 0.4, 

agtiii at x,/D = 2-5 ,  r3/D = 0-5. The ratio (u:(O))d/(Ldol/dt), which is needed to 
comlwre this value with the theory, is hard to obtain because of the difficulty 
of estimating (u:(O))&. If the valuc of u; a t  the edge of the mixing layer, 
where the mean velocity just equals that  in the potential core, is used, then 
(u2,(0))!/(Lda/dt) = 0.14. Therefore the predicted value for a total strain of 2 is 

- 

pI/p? = 0.435. 

That the agreement is so remarkably good is probably coincidental but the theo- 
retical value is clearly of the right order. 

Many measurements have been made of turbulent boundary-layer wall- 
pressure fluctuations. Larger-scale wall-pressure fluctuations are influenced by 
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FIGURE 7. Comparison of velocity correlations in the outer part of a turbulcnt boun- 
dary layer with the pressure correlation a t  the wall, all liming transverse separations. 

, R,,, Grant (1958); - - - -, R,,, Grant (1958); - 0 -, R,,, Bull (1967). 

both the outer and the inner parts of the boundary layer, the scale of the velocity 
fluctuations being larger in the outer part. I n  figure 7, velocity correlations (from 
Grant 1958) measured in the outer part of a turbulent boundary layer are com- 
pared with wall-pressure correlations (from Bull 1967), both correlations having 
transverse ( r2 )  separations. The pressure fluctuations retain significant correla- 
tion to a separation twice as large as that for the velocities. If one recalls that the 
wall pressures will be markedly affected by the inner part of the bounclary layer, 
the larger scale predicted for the pressure fluctuations receives increascd 
support. 

Correlations between turbulent bounclary-layer wall-pressure and velocity 
fluctuations have been measured by Willmarth & Wooldridge (1 963; discussed 
in Favre 1965) and Burton (1971). These references show Rlll(r) and Rj13(r) to be 
of the same order and of opposite sign. The shapes of the experimental ciirves 
agree with those predicted, but the relative magnitucle of Rp3 and R,, does not. 
This discrepancy is most likely due to poor prediction of the deiiominators 
( ~ ~ t i : ) :  of the correlation functions. Much of the energy of the velocity fluctua- 
tions resides a t  wavenumbers where rapid-distortion theory does not apply. A 
consequence is that the ratio uj/ul is drastically underestimated because the non- 
linear terms neglected by the theory decrease anisotropy (Mulhearn 1974). If 
I [ ;  and w; are more nearly equal in magnitude, so will R,, and RP3 be. 

Both in turbulent boundary layers (6.g. Kline et ctZ. 1967) and in mixing layers 
(e.g. Brown & Roshko 1974) there have been extensive experiments aimed a t  
investigating the large scales of the turbulence in terms of coherent structures, 
rather than from the statistical viewpoint of this paper. The two approaches 
should be compatible, even if i t  is not clear how they relate a t  this stage. 

Pressure fluctuations within the lower layers of the atmosphere and at the 

-- 
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ground were measured by Elliott ( 1  972). He found that pressure spectra were 
independent of height and that there was no difference in phase. between pressures 
measured at  different heights. This was over height intervals of up to 5.5 in. This 
behaviour contrasts with that of velocity fluctuations, whose spectra scale with 
height and whose cross-spectra, for vertical separations, display a phase shift. 
Again thcsa measurements support the predicted difference in scale between 
pressure and velocity fluctuations. 

5. Conclusions 
Pressure and pressure-velocity correlations were calculated from rapid- 

distortion theory for a uniform shear flow. Because of the success of Townsend 
( 1970) in predicting velocity correlations i t  appeared plausible to use these results 
to model the presswe field in two-dimensional frec shear flom. Thc lateral scale 
predicted for the prcssurc fluctuations wils larger than the flow width. I n  view of 
the good agreement previously found for velocity fluctuations it was proposed 
that pressure fluctuations are highly correlatedright across a turbulent shear flow. 
To support the predictions of the theory and, by implication, the last proposition, 
data from experiments with which one would expect a t  least qualitative agree- 
ment were examined, and the degree of agreement found was encouraging. A 
proper test of the theory would require measurement of space correlations within 
turbulent flows. It might bc worthwhile to attthmpt this using the probe described 
by Siddon (1969) ancl discussed in Willmarth (1971). 

I thank Dr I. 8. F. Jones of thc R A N .  Research Laboratory, Sydney, for 
usc of some of his unpublished data and for helpful discussions. Part of this work 
was done while the author was with the Royal Australian Navy Research Labora- 
tory, Sydney. 
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